ISSN: 2572-3103
Mirzaei M, Karimi Z
In this study, a nonlinear model for estimation of the tidal currents in shallow waters is presented. This hydrodynamic model, based on shallow water equations, has investigated the effects of Earth’s rotation and changes in topography and friction effects. According to the given model, the direction and velocity of tidal currents in each hour of a day along the year, for low amplitude waves at Khurmusa and Asaluyeh in Persian Gulf, can be calculated. This study has shown that the average velocity, during the tidal currents at Khurmusa’s level, is 0.36 m/s and the maximum speed is 0.999 m/s, while these values for Asaluyeh’s are respectively 0.17 m/s and 0.847 m/s. The comparison of the output of the model with experimental data has shown that the model has a good accuracy.